

1

NID-PFW Global Climate Projections and Unimpaired Hydrology July 25, 2023

Agenda

Projected Hydrology

- Introduction
- Climate Change Scenarios
- Climate Change Hydrology
- Bias Correction
- Representative Scenarios

Projected Demand

Introduction

GCM – CMIP6

Coupled Model Intercomparison Project Phase 6

100 models - 50 modeling centers

All scenarios have increasing temperature trends.

Climate Change Hydrology

Run the calibrated HEC-HMS to obtain local inflows:

What is bias? Why should we care?

➢ Is the NID HEC-HMS biased?

Are climate models biased?

Update on HEC-HMS Calibration

HEC-HMS Model Verification

Methods:

1. Gage proration

- 2. Water balance
 - Measured USGS streamflow at NID downstream locations
 - Estimated annual applied water and losses
- 3. HEC-HMS

Are climate models biased?

No

1976

Comparison of Average Total NID Historical Inflow (1976-2021)

Projected Hydrology Scenarios

Projected Hydrology Scenarios

7 Models and 3 scenarios

GCM Models	Emissions		
GCIVI IVIOUEIS	ssp245	sso370	ssp585
ACCESS-CM2	v	V	٧
EC-Earth3	v	V	V
EC-Earth3-Veg	v	V	V
CNRM-ESM2-1	v	V	٧
FGOALS-g3	v	V	V
HadGEM3-GC31-LL	v		V
CESM2-LENS		V	

Name Convention (example)

Projected: Scenarios Selection

Scenarios	Models and Emissions	
High Bookend (Wet)	HadGEM3-GC31-LL_ssp585	
Median	CNRM-ESM2 1_ssp245	
Low Bookend (Dry) CESM2-LENS_ssp37		
Projected 2022 2071		

50-Years Average Total Inflow for 10-Year Duration (TAF)

Timeseries of Total Annual Inflow for NID Basin (2022-2071)

50-Years Cumulative Total Annual Inflow for NID Basin (2022-2071)

Average Annual Temperature

Next Steps

- Develop Nine (3x3) HEC-ResSim Projected Simulations
 - 3 climate and 3 demand scenarios
- Select three representative scenarios (bookends and median)
- Simulate strategic alternatives

Discussion and Questions

21

References

CMIP6

- <u>https://pcmdi.llnl.gov/CMIP6/</u>
- <u>https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6</u>
- <u>CMIP6 Downscaling Using WRF | Alex Hall's Research Group (ucla.edu)</u>

LOCA

- <u>LOCA statistical downscaling LOCA Statistical Downscaling (Localized Constructed Analogs)</u> (ucsd.edu)
- Mean and Extreme Climate Change Impacts on The State Water Project
- <u>Guidance for Climate Change Data Use During Groundwater Sustainability Plan Development</u>
- <u>Cal-adapt</u>

NID-PFW Demand Model

Projected Demand Scenarios

Serving Stewards of Western Water Since 199:23

Agenda

- Review of Demand Model
- Projected Demand Scenarios
 - High Bookend
 - Baseline
 - Low Bookend
- Projected Demand Scenario Results
- Next Steps

Overview of Demand Model

Serving Stewards of Western Water Since 199

What is Demand?

- "Demand" is the volume of water needed to satisfy water users' needs
 - Raw water
 - Treated water
 - System losses
 - Municipal
 - Environmental flows

Demand Model - Demand Scenarios

Serving Stewards of Western Water Since 199_26

Demand Modeling Approach

• Demand Model for Customer Parcels

- Simulate raw and treated water demand
- Calibrated, physical model

• Water Balance for Conveyance System

- Simulate system flows, losses
- Link back to reservoirs

• Add in municipal, environmental flows

Demand Model - Demand Scenarios

Slide 27

Serving Stewards of Western Water Since 199_27

07/25/2023 Source(s): https://www.nidwater.com/getting-irrigation-water

Projected Demand Scenarios Purpose and Assumptions

Purpose of the Projected Demand Scenarios

- Develop and evaluate bookend scenarios to capture a range of potential projected conditions
 - Low Bookend
 - Baseline
 - High Bookend

Demand Model - Demand Scenarios

07/25/2023

Slide 30

Serving Stewards of Western Water Since 199³⁰

Source(s): https://www.nidwater.com/water-conservation-in-agriculture

Parameters Adjusted Between Scenarios

- Raw Water Customers
- Treated Water Customers
- Evapotranspiration (ET)
 - Reference ET (projected temperature consistent with climate change analyses)
 - Crop coefficients (cultivation and crop-related)

• System Losses

- Low: $10\% \rightarrow$ Baseline: $15\% \rightarrow$ High: 20%
- Projected Precipitation

07/25/2023

Discussed further on next slides

Demand Scenarios and Climate Change Scenarios

	Climate Change Scenarios		
Demand Scenarios	Wet	Median	Dry
Low Bookend	Low-Wet	Low-Median	Low-Dry
Baseline	Baseline-Wet	Baseline-Median	Baseline-Dry
High Bookend	High-Wet	High-Median	High-Dry

Raw Water and Treated Water Customers

Scenario	Raw Water	Treated Water
Low Bookend	Idling to reduce 20% demand from baseline	Pop. decline to lowest since 2000
Baseline	Expansion to soft service areas similar to historical rate (~20 ac/yr developed land)	Expansion to soft service areas similar to historical rate (~50 customers/yr)
High Bookend	Greater expansion to soft service areas at 1.5X baseline rate (~30 ac/yr developed land)	Greater expansion to soft service areas at 1.5X baseline rate (~75 customers/yr)

Evapotranspiration (ET)

Local Crop Coefficients (Kc)

ETo Calculated from Projected Temperature

Projected ETc

Recent historical conditions in NID, based on OpenET data

Demand Model - Demand Scenarios

Slide 34

Serving Stewards of Western Water Since 199,³⁴

ETo for Different Climate Change Scenarios

	Climate Change Scenarios		
Demand Scenarios	Wet	Median	Dry
Low Bookend	Low-Wet	Low-Median	Low-Dry
Baseline	Baseline-Wet	Baseline-Median	Baseline-Dry
High Bookend	High-Wet	High-Median	High-Dry

Evapotranspiration (ET)

Scenario	Reference ET (ETo) Temperature-Related	Crop Coefficient (Kc) Cultivation and Crop-related
Low Bookend	Wet Climate	25th percentile
(Low Demand)	Scenario	(By land use, 2022)
Baseline	Median Climate	50 th percentile
(Moderate Demand)	Scenario	(By land use, 2022)
High Bookend	Dry Climate	75th percentile
(High Demand)	Scenario	(By land use, 2022)

Comparison of ET Projection Method with OpenET ETc (2016-2022) (Pasture)

Demand Model - Demand Scenarios

Slide 36

Serving Stewards of Western Water Since 199

Projected Demand Scenarios Results

Serving Stewards of Western Water Since 199,³⁷

Projected Demand Scenarios

Demand Model - Demand Scenarios

Slide 38

Next Steps

- Evaluate projected demand scenarios in the context of reservoir operations
 - Evaluate potential unmet demand
 - Present in August
- Evaluate strategic alternative scenarios

Serving Stewards of Western Water Since 199.³⁹

Discussion and Questions

Serving Stewards of Western Water Since 199